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Abstract

In this paper we consider the age-old ANOVA problem of testing the equality of means
of several univariate normal populations with a common unknown variance, except that the
data used for analysis arise from a synthetic version of the original observations. We address
two versions of the synthetic data: one obtained under Plug-In sampling(PIS) method and
the other under Posterior Predictive Sampling(PPS) method. We study its distributional
properties (null and non-null) and provide enough computational details. A comparison of
power is also provided. As expected, the power under the PIS method is more than that
under the PPS method. A measure of privacy protection is also evaluated and it turns
out that the PIS method provides less protection than the PPS method, thus confirming the
standard belief that accuracy of inference and privacy protection work in opposite directions!

Keywords: ANOVA problem, non-central F distribution, plug-in sampling, posterior predictive sam-
pling

1 Introduction

Statistical agencies dealing with collection and publication of relevant data often face the problem of
releasing microdata for public use in view of compromising with the privacy of survey respondents.
Most often therefore data are summarized and presented in tabular forms. However, some data users
and policy stakeholders may also want to use the microdata to carry out other forms of data analysis,
different from what the agencies release. This calls for release of microdata under some perturbation
mechanism to ensure privacy protection. Statistical literature is quite rich in terms of data perturbation
methods and subsequent data analysis techniques based on perturbed data. Some commonly used data
perturbation methods include: noise addition/multiplication (Nayak, Zayatz and Sinha, 2011, [1], [2];
Klein and Sinha, 2013 [3]; Mathew, Klein and Sinha, 2014 [4]), model-based multiply imputed synthetic
data methods (Drechsler, 2011 [5]; Raghunathan et al., 2003 [7]; Reiter, 2003 [8]; Reiter and Kinney,
2012 [9]). While the inferential methods developed by Reiter et al (2003, 2004, 2005(a),(b),(c), 2012,
[8], [9], [10], [11], [12], [13]) are essentially asymptotic in nature, Klein and Sinha (2015 [14], [15], 2016
[16]) developed exact data analysis methods for singly imputed synthetic data based on some simple
parametric models under two popular types of synthetic data generation.
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Methodology, U.S. Census Bureau, Washington, DC 20233, USA. Email: sinha@umbc.edu
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In this paper we consider the age-old ANOVA problem of testing the equality of means of several
univariate normal populations with a common unknown variance, except that the data used for analysis
arise from a synthetic version of the original observations. Consider k random samples x 1,x 2, . . . ,x k
where the ith sample x i = (xi1, xi2, . . . , xini), i = 1, 2, . . . , k, is coming from N(µi, σ

2) distribution. Define
N =

∑k
i=1 ni, x̄i =

1
ni

∑ni
j=1 xij , x̄w = 1

N

∑k
i=1 nix̄i, and S

2
x =

∑k
i=1

∑ni
j=1(xij − x̄i)2. Our main objective

is to develop a testing strategy to test the equality of these k means, which is given by

H0 : µ1 = µ2 = . . . = µk against H1 : Atleast one inequality in H0. (1)

It is well known that, based on the original data x = (x 1,x 2, . . . ,x k), the likelihood ratio test (LRT) is

provided by the standard F -statistic defined as Fx =
(
N−k
k−1

)
BSS
WSS , where BSS =

∑k
i=1 ni(x̄i − x̄w)

2 and

WSS = S2
x =

∑k
i=1

∑ni
j=1(xij − x̄i)

2.
Our goal is now to suitably perturb the original data in view of privacy protection requirement and

provide appropriate analysis of the resultant perturbed data. As mentioned earlier, there are a variety of
methods in the statistics literature to accomplish this task. Here we consider two methods of generating
synthetic data and provide appropriate valid inference for testing H0 based on both types of synthetic
data. In Section 2 we discuss Plug-In Sampling method while in Section 3 the Posterior Predictive
Sampling method. Our inference is essentially based on the usual F -statistic based on the synthetic data
and we study its distributional properties (null and non-null) in both the cases. Computational details
and a comparison of power are provided in Section 4. Section 5 is devoted to a discussion of privacy
protection offered by the above data perturbation methods. As expected, PIS offers better inference and
less privacy protection compared to PPS.

2 Plug-In Sampling(PIS) Method

Here we consider the unbiased estimates of µi’s (i = 1, 2, . . . , k) and σ2 based on the original data

x = (x 1,x 2, . . . ,x k), as µ̂i = x̄i and σ̂
2 = S2

x
N−k , and hence draw k independent samples y1,y2, . . . ,yk

where the ith sample y i = (yi1, yi2, . . . , yini) is a random sample from N(x̄i, σ̂
2) distribution. Define

ȳi =
1
ni

∑ni
j=1 yij , ȳw = 1

N

∑k
i=1 niȳi, Within Sum of Squares(WSS(y)) = S2

y =
∑k

i=1

∑ni
j=1(yij − ȳi)

2,

and Between Sum of Squares(BSS(y)) =
∑k

i=1 ni(ȳi − ȳw)
2. Note that ȳ1, ȳ2, . . . , ȳk, S

2
y are jointly

sufficient for (µ1, µ2, . . . , µk, σ
2) based on the synthetic data y = (y1,y2, . . . ,yk) obtained by the above

method (see Klein and Sinha, 2015 [14] for a very general method). Next we consider the joint pdf of the
sufficient statistic (ȳ1, ȳ2, . . . , ȳk, S

2
y ) in the following theorem.

Theorem 2.1. The joint pdf of (ȳ1, ȳ2, . . . , ȳk, S
2
y) is given by

f(ȳ1, ȳ2, . . . , ȳk, S
2
y) ∝

1

(σ2)
N−1

2

∫ ∞

0

(S2
y)

N−k−2
2 (S2

x)
−(K+1

2
)(

σ2 + S2
x

N−k

) 1
2

× exp

−1

2

S2
x

σ2
+

(N − k)S2
y

S2
x

+

∑k
i=1 ni(ȳi − µi)

2(
σ2 + S2

x
N−k

)

 dS2

x

Proof. Starting from the fact that x̄i ∼ N(µi,
σ2

ni
) independently for each i = 1, 2, . . . , k, and S2

x
σ2 ∼ χ2

N−k
independently of each x̄i, we can write the joint pdf of (x̄1, x̄2, . . . , x̄k, S

2
x) as given by,

f(x̄1, x̄2, . . . , x̄k, S
2
x) ∝

(S2
x)

N−k
2

−1e−
1

2σ2
[S2
x+

∑k
i=1 ni(x̄i−µi)2]

(σ2)
N
2

.

Conditionally given (x̄1, x̄2, . . . , x̄k, S
2
x),

ȳi ∼ N

(
x̄i,

σ̂2

ni

)
, independently for i = 1, 2, . . . , k,

2



S2
y ∼ σ̂2χ2

N−k, independently of each ȳi.

Therefore the conditional pdf of (ȳ1, ȳ2, . . . , ȳk, S
2
y |x̄1, x̄2, . . . , x̄k, S2

x) is given by,

f(ȳ1, ȳ2, . . . , ȳk, S
2
y |x̄1, x̄2, . . . , x̄k, S2

x) ∝
(S2
y)

N−k
2

−1e−
1

2σ̂2
[S2
y+

∑k
i=1 ni(ȳi−x̄i)2]

(σ̂2)
N
2

.

The joint pdf of (ȳ1, ȳ2, . . . , ȳk, S
2
y ) can be expressed as,

f(ȳ1, ȳ2, . . . , ȳk, S
2
y ) =

∫
x̄1

∫
x̄2

. . .

∫
x̄k

∫ ∞

0
f(ȳ1, ȳ2, . . . , ȳk, S

2
y |x̄1, x̄2, . . . , x̄k, S2

x)

× f(x̄1, x̄2, . . . , x̄k, S
2
x)dx̄1dx̄2 . . . dx̄kdS

2
x

∝ 1

(σ2)
N
2

∫
x̄1

∫
x̄2

. . .

∫
x̄k

∫ ∞

0
(S2
y)

N−k
2

−1(S2
x)

−( k+2
2

)

× e
− 1

2

[
S2x+

∑k
i=1 ni(x̄i−µi)

2

σ2
+
S2y+

∑k
i=1 ni(ȳi−x̄i)

2

σ̂2

]
dx̄1dx̄2 . . . dx̄kdS

2
x.

We see that ∑k
i=1 ni(ȳi − x̄i)

2

σ̂2
+

∑k
i=1 ni(x̄i − µi)

2

σ2

=

∑k
i=1 ni(ȳi − µi)

2

σ2 + σ̂2
+

(
1

σ2
+

1

σ̂2

) k∑
i=1

ni

[
x̄i − µi −

ȳi − µi

σ̂2( 1
σ2 + 1

σ̂2 )

]2
Hence after integrating out x̄i’s the joint pdf reduces to

f(ȳ1, ȳ2, . . . , ȳk, S
2
y ) ∝

1

(σ2)
N
2

∫ ∞

0

(S2
y)

N−k
2

−1(S2
x)

−( k+2
2

)(
1
σ2 + 1

σ̂2

) 1
2

e
− 1

2

[
S2x
σ2

+
S2y

σ̂2
+

∑k
i=1 ni(ȳi−µi)

2

σ2+σ̂2

]
dS2

x.

Finally we put σ̂2 = S2
x

N−k in the above form and hence the result follows. [Theorem (2.1) is proved]

The inferential results are discussed in the following remarks.

Remark 2.1. Following Fx , we define the test statistic Fy =
(
N−k
k−1

)
BSS(y)
WSS(y) , based on the PIS synthetic

data, and a level γ test based on the synthetic data y for the testing problem (1) is given by Fy > CN,k,γ ,
where CN,k,γ is such that P [Fy > CN,k,γ |H0] = γ. We obtain CN,k,γ by the following steps:

1. We consider the conditional distribution of Fy |x which follows a non-central F -distribution with

degrees of freedom (k − 1, N − k) and the non centrality parameter being λx =
∑k
i=1 ni(x̄i−x̄w)2

σ̂2

where x̄w = 1
N

∑k
i=1 nix̄i. Again

∑k
i=1 ni(x̄i−x̄w)2

σ2 follows a non-central chi square distribution with

k − 1 degrees of freedom and the non centrality parameter being λ =
∑k
i=1 ni(µi−µ̄w)2

σ2 where µ̄w =

1
N

∑k
i=1 niµi. Note that λ = 0 under H0 and hence

∑k
i=1 ni(x̄i−x̄w)2

σ2 ∼ χ2
k−1 under H0. Also

σ̂2 = S2
x

N−k ∼ σ2

N−kχ
2
N−k which is independently distributed with

∑k
i=1 ni(x̄i−x̄w)2

σ2 , therefore λx
follows a (k − 1) times non-central F -distribution with parameters (k − 1, N − k) and the non
centrality parameter be λ and λx ∼ (k − 1)Fk−1,N−k under H0.

2. Note that γ = P [Fy > CN,k,γ |H0], which can be written as,

γ = P [Fy > CN,k,γ |H0]

= EH0 [P (Fy > CN,k,γ |x )]
= EH0 [P (Fk−1,N−k(λx ) > CN,k,γ |x )]
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= EH0

e−λx
2

∞∑
j=0

(λx2 )j

j!

k + 2j − 1

k − 1
P (Fk+2j−1,N−k > CN,k,γ)



where Fk−1,N−k(λx ) is a non-central F -variate with degrees of freedom (k − 1, N − k) with non
centrality parameter λx and Fk+2j−1,N−k be a central F -variate with degrees of freedom (k+2j −
1, N − k).

3. For a fixed C we can compute the expectation under H0 by generating a large number of λx ’s as
λx ∼ (k − 1)Fk−1,N−k under H0, and compute the the quantity inside the expectation for each of
those λx ’s and take the arithmetic mean to get the expectation.

4. Finally we numerically solve EH0

[
e−

λx
2
∑∞

j=0
(λx

2
)j

j!
k+2j−1
k−1 P (Fk+2j−1,N−k > C)

]
− γ = 0 for C to

get the cutoff CN,k,γ .

Different cutoff values (CN,k,γ ’s) for different sets of sample sizes under fixed k and γ are given in section
4.

Remark 2.2. The power of the test proposed in remark (2.1) for a fixed alternative point µ = (µ1, µ2, µ3, µ4, µ5)
and σ = 1 from H1 is given by βPIS(µ) = P [Fy > CN,k,γ |µ]. βPIS(µ) is calculated by Monte Carlo sim-
ulation technique. We generate a large number (106) of synthetic data sets and obtain the value of the
test statistic for each of those data sets, then find the proportion of the values which are greater than
CN,k,γ . The powers for different choices of alternatives are given in section 4.

3 Posterior Predictive Sampling(PPS) Method

We assume a joint prior density of (µi, σ
2) as π(µ, σ2) ∝ (σ)−α for each i = 1, 2, . . . , k, where N +α > 7.

A synthetic data under this method can be obtained using the following steps.

1. First we draw (σ∗)2 such that S2
x

(σ∗)2 ∼ χ2
N+α−3.

2. Draw µ∗i |(σ∗)2 ∼ N(x̄i,
(σ∗)2

ni
), independently for each i = 1, 2, . . . , k.

3. Finally draw z i = (zi1, zi2, . . . , zini) where zij ’s (j = 1, 2, . . . , ni) are iid N(µ∗i , (σ
∗)2), independently

for each i = 1, 2, . . . , k.

Here z = (z 1, z 2, . . . , z k) constitutes the synthetic data obtained under PPS sampling method. Similar
to the Plug-In sampling method which is discussed in section 2, here we define z̄i =

1
ni

∑ni
j=1 zij , z̄w =

1
N

∑k
i=1 niz̄i, Within Sum of Squares(WSS(z )) = S2

z =
∑k

i=1

∑ni
j=1(zij − z̄i)

2, and Between Sum of

Squares(BSS(z )) =
∑k

i=1 ni(z̄i−z̄w)2. Likewise the case of PIS, here z̄1, z̄2, . . . , z̄k, S2
z are jointly sufficient

for (µ1, µ2, . . . , µk, σ
2) based on the synthetic data z = (z 1, z 2, . . . , z k) obtained by the above method

(see Klein and Sinha, 2015 [14]).

Theorem 3.1. The joint pdf of (z̄1, z̄2, . . . , z̄k, S
2
z ) is given by

f(z̄1, z̄2, . . . , z̄k, S
2
z ) ∝

(S2
z )

N−k
2

−1

(σ2)
N
2

∫ ∞

0

ψ
2N+α−5

2 e
− ψ

2σ2

[
S2
z+

1
2+ψ

∑k
i=1 ni(z̄i−µi)2

]
(1 + ψ)

2N+α−k−3
2 (2 + ψ)

k
2

dψ

where ψ = σ2

(σ∗)2 .

Proof. We start with the joint pdf of (x̄1, x̄2, . . . , x̄k, S
2
x) as given by,

f(x̄1, x̄2, . . . , x̄k, S
2
x) ∝

(S2
x)

N−k
2

−1e−
1

2σ2
[S2
x+

∑k
i=1 ni(x̄i−µi)2]

(σ2)
N
2

.
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Next we note that µ∗i ’s (i = 1, 2, . . . , k) and (σ∗)2 are generated as mentioned in Steps 1. and 2. of
section 3, and therefore the joint pdf of (µ∗1, µ

∗
2, . . . , µ

∗
k, (σ

∗)2) conditionally for given (x̄1, x̄2, . . . , x̄k, S
2
x)

is given by,

f(µ∗1, µ
∗
2, . . . , µ

∗
k, (σ

∗)2|x̄1, x̄2, . . . , x̄k, S2
x) ∝

(S2
x)

N+α−3
2 e

− 1
2(σ∗)2 [S

2
x+

∑k
i=1 ni(µ

∗
i−x̄i)2]

{(σ∗)2}
N+α+k−3

2
+1

.

Again conditionally given (µ∗1, µ
∗
2, . . . , µ

∗
k, (σ

∗)2),

z̄i ∼ N

(
µ∗i ,

(σ∗)2

ni

)
, independently for i = 1, 2, . . . , k,

S2
z ∼ (σ∗)2χ2

N−k, independently of each z̄i.

Therefore the conditional pdf of (z̄1, z̄2, . . . , z̄k, S
2
z |µ∗1, µ∗2, . . . , µ∗k, (σ∗)2) is given by,

f(z̄1, z̄2, . . . , z̄k, S
2
z |µ∗1, µ∗2, . . . , µ∗k, (σ∗)2) ∝

1

{(σ∗)2}
N
2

(S2
z )

N−k
2

−1e
− 1

2(σ∗)2 [S
2
z+

∑k
i=1 ni(z̄i−µ∗i )2]

We can write the joint pdf of (z̄1, z̄2, . . . , z̄k, S
2
z ) as,

f(z̄1, z̄2, . . . , z̄k, S
2
z )

∝
∫
µ∗1

∫
µ∗2

. . .

∫
µ∗k

∫
x̄1

∫
x̄2

. . .

∫
x̄k

∫ ∞

0

∫ ∞

0
f(z̄1, z̄2, . . . , z̄k, S

2
z |µ∗1, µ∗2, . . . , µ∗k, (σ∗)2)

× f(µ∗1, µ
∗
2, . . . , µ

∗
k, (σ

∗)2|x̄1, x̄2, . . . , x̄k, S2
x)f(x̄1, x̄2, . . . , x̄k, S

2
x)

(
k∏
i=1

dµ∗i

)(
k∏
i=1

dx̄i

)
dS2

zd(σ
∗)2

∝
∫
µ∗1

∫
µ∗2

. . .

∫
µ∗k

∫
x̄1

∫
x̄2

. . .

∫
x̄k

∫ ∞

0

∫ ∞

0

(S2
z )

N−k
2

−1(S2
x)

2N+α−k−5
2

(σ2)
N
2 {(σ∗)2}

2N+α+k−1
2

e
− S2z

2(σ∗)2 e
−
[

1
σ2

+ 1
(σ∗)2

]
S2x
2

× e−
1

2σ2

∑k
i=1 ni(x̄i−µi)2e

− 1
2(σ∗)2

∑k
i=1 ni[(z̄i−µ∗i )2+(µ∗i−x̄i)2]

(
k∏
i=1

dµ∗i

)(
k∏
i=1

dx̄i

)
dS2

zd(σ
∗)2.

Note that (z̄i − µ∗i )
2 + (µ∗i − x̄i)

2 = (z̄i−x̄i)2
2 + 2

[
µ∗i −

z̄i+x̄i
2

]2
, integrating out µ∗1, µ

∗
2, . . . , µ

∗
k we get,

f(z̄1, z̄2, . . . , z̄k, S
2
z )

∝
∫
x̄1

∫
x̄2

. . .

∫
x̄k

∫ ∞

0

∫ ∞

0

(S2
z )

N−k
2

−1(S2
x)

2N+α−k−5
2

(σ2)
N
2 {(σ∗)2}

2N+α−1
2

e
− S2z

2(σ∗)2 e
−
[

1
σ2

+ 1
(σ∗)2

]
S2x
2

× e
− 1

2

∑k
i=1 ni

[
(z̄i−x̄i)

2

2(σ∗)2
+

(x̄i−µi)
2

σ2

](
k∏
i=1

dx̄i

)
dS2

zd(σ
∗)2.

Again we see that,

(z̄i − x̄i)
2

2(σ∗)2
+

(x̄i − µi)
2

σ2

=
(z̄i − µi)

2

σ2 + 2(σ∗)2
+

(
1

σ2
+

1

2(σ∗)2

)[
x̄i −

µi
σ2 + z̄i

2(σ∗)2

1
σ2 + 1

2(σ∗)2

]2
.

Integrating out x̄1, x̄2, . . . , x̄k, and after doing some simplifications we get,

f(z̄1, z̄2, . . . , z̄k, S
2
z )

∝
∫ ∞

0

∫ ∞

0

(S2
z )

N−k
2

−1(S2
x)

2N+α−k−5
2

(σ2)
N−k

2 {(σ∗)2}
2N+α−k−1

2 (σ2 + 2(σ∗)2)
k
2

e
− S2z

2(σ∗)2 e
−
[

1
σ2

+ 1
(σ∗)2

]
S2x
2

5



× e
− 1

2

∑k
i=1

ni(z̄i−µi)
2

σ2+2(σ∗)2 dS2
zd(σ

∗)2,

and thereafter integrating over S2
x we get,

f(z̄1, z̄2, . . . , z̄k, S
2
z ) ∝

∫ ∞

0

(S2
z )

N−k
2

−1e
− S2z

2(σ∗)2 e
− 1

2

∑k
i=1

ni(z̄i−µi)
2

σ2+2(σ∗)2

(σ2)−
N+α−3

2 (σ∗)2(σ2 + (σ∗)2)
2N+α−k−3

2 (σ2 + 2(σ∗)2)
k
2

d(σ∗)2.

Finally making the transformation (σ∗)2 → ψ = σ2

(σ∗)2 and after doing some simplifications we get,

f(z̄1, z̄2, . . . , z̄k, S
2
z ) ∝

(S2
z )

N−k
2

−1

(σ2)
N
2

∫ ∞

0

ψ
2N+α−5

2 e
− ψ

2σ2

[
S2
z+

1
2+ψ

∑k
i=1 ni(z̄i−µi)2

]
(1 + ψ)

2N+α−k−3
2 (2 + ψ)

k
2

dψ.

[Theorem (3.1) is proved]

The marginal distribution of ψ is given in the following theorem.

Theorem 3.2. The marginal distribution of ψ is such that
(

N−k
N+α−3

)
ψ ∼ FN+α−3,N−k.

Proof. The joint pdf of (z̄1, z̄2, . . . , z̄k, S
2
z , ψ) which can be found from Theorem(3.1) as,

f(z̄1, z̄2, . . . , z̄k, S
2
z , ψ) ∝

(S2
z )

N−k
2

−1ψ
2N+α−5

2 e
− ψ

2σ2

[
S2
z+

1
2+ψ

∑k
i=1 ni(z̄i−µi)2

]
(σ2)

N
2 (1 + ψ)

2N+α−k−3
2 (2 + ψ)

k
2

.

Integrating over z̄1, z̄2, . . . , z̄k we get,

f(S2
z , ψ) ∝

ψ
2N+α−k−5

2 (S2
z )

N−k
2

−1e−
ψS2z
2σ2

(σ2)
N−k

2 (1 + ψ)
2N+α−k−3

2

,

and hence integrating over S2
z we get the marginal pdf of ψ as,

f(ψ) ∝ ψ
N+α−3

2
−1

(1 + ψ)
N+α−3

2
+N−k

2

, 0 < ψ <∞

=
1

B
(
N+α−3

2 , N−k
2

) ψ
N+α−3

2
−1

(1 + ψ)
N+α−3

2
+N−k

2

, 0 < ψ <∞,

where B(a, b) is the beta function. Therefore
(

N−k
N+α−3

)
ψ ∼ FN+α−3,N−k. [Theorem (3.2) is proved]

The inferential results are discussed in the following remarks.

Remark 3.1. From theorem (3.1) it directly follows that conditionally given ψ,

i) z̄i ∼ N
(
µi,

(2+ψ)
ψ

σ2

ni

)
, independently for each i = 1, 2, . . . , k,

ii) ψS2
z

σ2 ∼ χ2
N−k, independently of all z̄i’s (i = 1, 2, . . . , k).

Defining σ2i = (2+ψ)
ψ

σ2

ni
and µ̄w = 1

N

∑k
i=1 niµi we get, for conditionally given ψ,

∑k
i=1

(z̄i−z̄w)2
σ2
i

=

BSS(z )
σ2

(
ψ

2+ψ

)
will follow a non-central chi-square distribution with degrees of freedom k − 1 and the

non-centrality parameter be λ =
∑k

i=1
(µi−µ̄w)2

σ2
i

and ψ
σ2WSS(z ) ∼ χ2

N−k independently of BSS(z ). To

test the ANOVA problem given in (1) based on the synthetic data z = (z 1, z 2, . . . , z k) as in the previous

case, we define our test statistic under this method as Fz =
(
N−k
k−1

)
BSS(z )
WSS(z ) which, conditionally given ψ,

follows (2 + ψ) times a non-central F -distribution with degrees of freedom (k − 1, N − k) and with the
non-centrality parameter λ. Note that λ = 0 under H0 and hence Fz |ψ ∼ (2 + ψ)Fk−1,N−k under H0. A
level γ test based on the synthetic data z for the testing problem (1) is given by Fz > DN,k,α,γ , where
DN,k,α,γ is such that P [Fz > DN,k,α,γ |H0] = γ. We obtain DN,k,α,γ by the following steps,
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1. We can write,

γ = P [Fz > DN,k,α,γ |H0]

= EH0 [P (Fz > DN,k,α,γ |ψ)]

= EH0

[
P

(
Fk−1,N−k >

DN,k,α,γ

2 + ψ
|ψ
)]

2. For a fixed D, to compute the expectation EH0

[
P
(
Fk−1,N−k >

D
2+ψ |ψ

)]
, we generate a large

number of ψ’s such that
(

N−k
N+α−3

)
ψ ∼ FN+α−3,N−k, then compute P

(
Fk−1,N−k >

D
2+ψ

)
for each

of those ψ’s and take their simple arithmetic mean.

3. Finally we numerically solve EH0

[
P
(
Fk−1,N−k >

D
2+ψ |ψ

)]
− γ = 0 for D to obtain DN,k,α,γ .

Different DN,k,α,γ ’s are obtained for different sets of sample sizes which are provided in section 4.

Remark 3.2. The power of the test based on Fz , at a particular alternative point µ = (µ1, µ2, µ3, µ4, µ5)
and σ = 1 is given by βPPS(µ) = P [Fz > DN,k,α,γ |µ]. Similar to the PIS case, here also we use Monte
Carlo simulation to compute the powers. We generate a very large number (106) of synthetic data sets
by PPS method under a fixed choice of alternative µ = (µ1, µ2, µ3, µ4, µ5) and obtain the value of Fz for
each of these data sets. The estimated power will be the proportion of the cases that the value of Fz

exceeds the cutoff DN,k,α,γ . The powers for different sets of alternatives are provided in section 4.

4 Simulation Studies

In this section we provide a simulation study for comparison of power of the two F -tests proposed in
Sections 2 and 3. We take k = 5 and four choices of set of sample sizes as ni = 10, i = 1(1)5, ni = 15, i =
1(1)5, ni = 20, i = 1(1)5, and n1 = 10, n2 = 10, n3 = 15, n4 = 20, n5 = 25. In both PIS and PPS method
we take γ = 0.05 and in PPS method α = 4. Five choices of set of alternatives (µ1, µ2, µ3, µ4, µ5) are taken
as (0, 0, 0, 0, 0.5), (0, 0, 0,−0.5, 0.5), (0,−0.5,−0.5, 0.5, 0.5), (0,−1,−0.5, 0.5, 1), and (0,−1,−1, 1, 1). We
use Monte Carlo simulation technique with S = 100000 iterations to compute the powers. Following are
the tables showing the cut-off points of the test statistics for different sets of sample sizes for both PIS
and PPS methods and also the tables showing the powers of the tests for different choices of alternatives.
Clearly the powers under PIS method are higher than those under PPS method.

Table 1: CUTOFF POINTS FOR DIFFERENT CHOICES OF SAMPLE SIZES UNDER PIS
(k = 5, γ = 0.05, S = 100000)
.

(n1, n2, n3, n4, n5) N CN,k,γ
(10,10,10,10,10) 50 5.33159
(15,15,15,15,15) 75 5.12243
(20,20,20,20,20) 100 5.02934
(10,10,15,20,25) 80 5.08072
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Table 2: CUTOFF POINTS FOR DIFFERENT CHOICES OF SAMPLE SIZES UNDER PPS
(k = 5, γ = 0.05, α = 4, S = 100000)
.

(n1, n2, n3, n4, n5) N DN,k,α,γ

(10,10,10,10,10) 50 8.20283
(15,15,15,15,15) 75 7.78576
(20,20,20,20,20) 100 7.59969
(10,10,15,20,25) 80 7.77348

Table 3: TABLE SHOWING THE POWER FOR DIFFERENT CHOICES OF ALTERNATIVES
AND DIFFERENT CHOICES OF SAMPLE SIZES UNDER PIS (k = 5, γ = 0.05, S = 100000)
.

(µ1, µ2, µ3, µ4, µ5)
(n1, n2, n3, n4, n5)

(10,10,10,10,10) (15,15,15,15,15) (20,20,20,20,20) (10,10,15,20,25)
(0,0,0,0,0.5) 0.09913 0.13102 0.16348 0.17448

(0,0,0,-0.5,0.5) 0.18898 0.27959 0.37456 0.41313
(0,-0.5,-0.5,0.5,0.5) 0.35557 0.53521 0.68064 0.57680
(0,-1,-0.5,0.5,1) 0.75660 0.92609 0.98118 0.94345
(0,-1,-1,1,1) 0.92926 0.99272 0.99930 0.99609

Table 4: TABLE SHOWING THE POWER FOR DIFFERENT CHOICES OF ALTERNATIVES
AND DIFFERENT CHOICES OF SAMPLE SIZES UNDER PPS (k = 5, γ = 0.05, α = 4, S =
100000)
.

(µ1, µ2, µ3, µ4, µ5)
(n1, n2, n3, n4, n5)

(10,10,10,10,10) (15,15,15,15,15) (20,20,20,20,20) (10,10,15,20,25)
(0,0,0,0,0.5) 0.08755 0.10629 0.12831 0.13636

(0,0,0,-0.5,0.5) 0.15121 0.21016 0.26993 0.29953
(0,-0.5,-0.5,0.5,0.5) 0.26855 0.39275 0.51015 0.42202
(0,-1,-0.5,0.5,1) 0.60137 0.79649 0.90669 0.82283
(0,-1,-1,1,1) 0.80836 0.94558 0.98722 0.96096

5 Disclosure Risk Evaluation

When the original (unit level) microdata is considered to be sensitive and thus hidden through the use
of a masked version, it is natural to examine the extent to which sensitivity of a data point has been
protected. A slight variation of a popular measure to study the disclosure risk of a single value xi is given
by (Klein and Sinha (2016) [16].)

P [|x̂i − xi| < ϵ|X] = θi

where X is the entire original data, and x̂i is an intruder’s prediction of xi based upon seeing the
released (artificial/synthetic) data, ϵ be any small positive quantity. Naturally, a high value of the above
probability indicates a low level of protection and vice versa. This measure is computed based on the
random mechanism producing the masked data, given the original data X.
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Returning to our specific problem, the jth observation from the ith experiment, namely, xij , has been
perturbed and replaced by yij under PIS and zij under PPS. We consider two cases: Case (1) - the label
(unit) which produced the jth item is identifiable and Case (2) - identity is lost. In Case (1), intruder’s
best guess about xij can be taken as yij (PIS) or zij (PPS). In Case (2), on the other hand, the intruder
being unable to identify the jth unit in ith experiment, makes a guess ȳi (PIS) or z̄i (PPS) for the missing
xij value.

The following theorem gives upper bounds to the disclosure risk both under PIS and PPS. Although
it is quite possible to exactly compute the required disclosure risk probabilities for any unit (identifiable
or not), the usefulness of the upper bounds lies in the merit that they provide the best case scenarios
and also these bounds are independent of any specific responder, thus providing a uniform comparison
under PIS and PPS.

Theorem 5.1. Suppose θij be the disclosure risk for the jth unit in the ith experiment then,
Case (1): (Units are identifiable)

(a) θij ≤ 2Φ( ϵsx )− 1 (PIS)

(b) θij ≤ 2Gν

(
ϵ

sx
√

1+ 1
ni

)
− 1 (PPS)

Case (2): (Units are unidentifiable)

(a) θij ≤ 2Φ
(√

niϵ
sx

)
− 1 (PIS)

(b) θij ≤ 2Gν

(
ϵ

sx
√

2
ni

)
− 1 (PPS)

where ϕ(.) is the pdf of a N(0, 1) distribution and gν(.) is the pdf of a t-distribution with ν = N + α− 3

degrees of freedom and s2x = σ̂2 = WSS
(N−k) =

S2
x

N−k .

Proof. Case (1): Here we assume that all the units of each experiments are identifiable. The disclosure
risk for the jth unit corresponding to the ith experiment is given by

θij = P [|x̂ij − xij | < ϵ|X].

(a) Under PIS method, intruder’s best guess about xij will be yij , that is x̂ij = yij , i = 1, 2, . . . , k; j =
1, 2, . . . , ni. Now yij |X ∼ N(x̄i, s

2
x) for each j = 1, 2, . . . , ni and i = 1, 2, . . . , k, therefore we can write,

θij = P [|x̂ij − xij | < ϵ|X]

= P [|yij − xij | < ϵ|X]

= P [−ϵ < yij − xij < ϵ|X]

= P

[
−ϵ− (x̄i − xij)

sx
< Z <

ϵ− (x̄i − xij)

sx

]
(where Z is a N(0, 1) variate.)

= P [−η + δij < Z < η + δij ]

(writing η = ϵ
sx

and δij =
xij−x̄i
sx

)

= Φ(η + δ)− Φ(−η + δ)

(Φ be the CDF of N(0, 1) distribution.)

≤ Φ(η)− Φ(−η)
= 2Φ(η)− 1.

(b) Under PPS method, intruder’s best guess about xij will be zij , that is x̂ij = zij , i = 1, 2, . . . , k; j =
1, 2, . . . , ni. Now zij |µ∗i , (σ∗)2 ∼ N(µ∗i , (σ

∗)2) for each j = 1, 2, . . . , ni and i = 1, 2, . . . , k, where µ∗i |(σ∗)2 ∼
N(x̄i,

(σ∗)2

ni
), independently for each i = 1, 2, . . . , k and S2

x
(σ∗)2 ∼ χ2

ν (ν = N + α− 3).
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In order to find the disclosure risk θij = P [|zij−xij | < ϵ|X], we need to find the marginal distribution
of zij |X. The joint pdf of (zij , µ

∗
i , (σ

∗)2) has the pdf of the form,

f(zij , µ
∗
i , (σ

∗)2) = f(zij |µ∗i , (σ∗)2)× f(µ∗i |(σ∗)2)× f((σ∗)2)

∝ (S2
x)

ν
2

[(σ∗)2]
ν
2
+2
e
− S2x

2(σ∗)2 e
− 1

2(σ∗)2 [(zij−µ
∗
i )

2+ni(µ
∗
i−x̄i)2].

Note that,

(zij − µ∗i )
2 + ni(µ

∗
i − x̄i)

2 = (ni + 1)

[
µ∗i −

zij + nix̄i
ni + 1

]2
+
ni(zij − x̄i)

2

ni + 1
.

Therefore integrating the joint pdf over µ∗i and then over (σ∗)2 we get the marginal pdf of zij given the
data as,

f(zij |X) ∝
∫ ∞

0

(S2
x)

ν
2 e

− S2x
2(σ∗)2

[(σ∗)2]
ν
2
+1

× e
− ni

2(ni+1)(σ∗)2
(zij−x̄i)2

σ∗
d(σ∗)2.

From the above expression of the marginal pdf we can write,

1. zij |(σ∗)2,X ∼ N
(
x̄i,

(ni+1)(σ∗)2

ni

)
⇒ zij−x̄i

σ∗
√

1+ 1
ni

|(σ∗)2,X ∼ N(0, 1),

2. S2
x

(σ∗)2 |X ∼ χ2
ν .

Defining s2x = S2
x
ν , we can write

zij − x̄i

sx

√
1 + 1

ni

|X ∼ tν .

Finally the disclosure risk can be written as,

θij = P [|zij − xij | < ϵ|X]

= P [−ϵ+ xij < zij < ϵ+ xij |X]

= P

−ϵ+ xij − x̄i

sx

√
1 + 1

ni

< tν <
ϵ+ xij − x̄i

sx

√
1 + 1

ni


where tν follows a t-distribution with ν degrees of freedom.

= Gν(ηi + ζij)−Gν(−ηi + ζij)

(writing ηi =
ϵ

sx
√

1+ 1
ni

and ζij =
xij−x̄i

sx
√

1+ 1
ni

)

≤ Gν(ηi)−Gν(−ηi)
[Gν(.) is the CDF of a t-distribution with ν degrees of freedom]

= 2Gν(ηi)− 1.

Case (2): Here the identities of jth unit (j = 1, 2, . . . , ni) corresponding to the ith experiment (i =
1, 2, . . . , k) are lost, hence the intruder’s best guess about xij will be taken as ȳi for PIS and z̄i for PPS.
The disclosure risk for the jth unit corresponding to the ith experiment is given by

θij = P [|x̂ij − xij | < ϵ|X]

=

{
P [|ȳi − xij | < ϵ|X] (PIS)

P [|z̄i − xij | < ϵ|X] (PPS).

(a) Note that, ȳi|X ∼ N(x̄i,
s2x
ni
) for i = 1, 2, . . . , k, and hence the disclosure risk under PIS is given by

θij = P [|ȳi − xij | < ϵ|X]
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= P [−ϵ < ȳi − xij < ϵ|X]

= P

[
−ϵ+ (xij − x̄i)

sx√
ni

< Z <
−ϵ+ (xij − x̄i)

sx√
ni

]
(where Z is a N(0, 1) variate.)

= P [−ηi + δij < Z < ηi + δij ]

(writing ηi =
√
niϵ
sx

and δij =
√
ni(xij−x̄i)

sx
)

= Φ(ηi + δij)− Φ(−ηi + δij)

(Φ be the CDF of N(0, 1) distribution.)

≤ Φ(ηi)− Φ(−ηi)
= 2Φ(ηi)− 1.

(b) To derive the disclosure risk under PPS, we need to find the marginal distribution of z̄i|X. Now

z̄i|µ∗i , (σ∗)2 ∼ N(µ∗i ,
(σ∗)2

ni
) for i = 1, 2, . . . , k, where µ∗i |(σ∗)2 ∼ N(x̄i,

(σ∗)2

ni
), independently for each

i = 1, 2, . . . , k and S2
x

(σ∗)2 ∼ χ2
ν (ν = N + α− 3).The joint pdf of (z̄i, µ

∗
i , (σ

∗)2) has the pdf of the form,

f(z̄i, µ
∗
i , (σ

∗)2) = f(z̄i|µ∗i , (σ∗)2)× f(µ∗i |(σ∗)2)× f((σ∗)2)

∝ (S2
x)

ν
2

[(σ∗)2]
ν
2
+2
e
− S2x

2(σ∗)2 e
− ni

2(σ∗)2 [(z̄i−µ
∗
i )

2+(µ∗i−x̄i)2].

Note that,

(zij − µ∗i )
2 + (µ∗i − x̄i)

2 = 2

[
µ∗i −

z̄i + x̄i
2

]2
+

(z̄i − x̄i)
2

2
.

Integrating the joint pdf over µ∗i and then over (σ∗)2 we get the marginal pdf of z̄i given the data as,

f(z̄i|X) ∝
∫ ∞

0

(S2
x)

ν
2 e

− S2x
2(σ∗)2

[(σ∗)2]
ν
2
+1

× e
− ni

4(σ∗)2
(z̄i−x̄i)2

σ∗
d(σ∗)2.

From the above expression of the marginal pdf we can write,

1. z̄i|(σ∗)2,X ∼ N
(
x̄i,

2(σ∗)2

ni

)
⇒

√
ni(z̄i−x̄i)
σ∗

√
2

|(σ∗)2,X ∼ N(0, 1),

2. S2
x

(σ∗)2 |X ∼ χ2
ν .

Defining s2x = S2
x
ν , we can write √

ni(z̄i − x̄i)

sx
√
2

|X ∼ tν .

Therefore the disclosure risk under PPS can be written as,

θij = P [|z̄i − xij | < ϵ|X]

= P [−ϵ+ xij < z̄i < ϵ+ xij |X]

= P

−ϵ+ xij − x̄i

sx

√
2
ni

< tν <
ϵ+ xij − x̄i

sx

√
2
ni


where tν follows a t-distribution with ν degrees of freedom.

= Gν(ηi + ζij)−Gν(−ηi + ζij)

(writing ηi =
ϵ

sx
√

2
ni

and ζij =
xij−x̄i
sx

√
2
ni

)

≤ Gν(ηi)−Gν(−ηi).
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[Gν(.) is the CDF of a t-distribution with ν degrees of freedom]

= 2Gν(ηi)− 1.

[Theorem (5.1) is proved]

Next we compute the upper bounds to the disclosure risks under PIS and PPS methods for both
case (1) and (2) by taking suitable choices of ϵ, sx and different sample sizes for different experiments.
Here we have taken ϵ = 0.1, sx = 5, 10, 15, 20 and the sample sizes for three independent experiments as
n1 = 10, n2 = 15 and n3 = 20. The tables are given below.

Table 5: TABLE SHOWING THE UPPER BOUND TO THE DISCLOSURE RISKS UNDER
CASE (1) [ALL UNITS ARE IDENTIFIABLE] (ϵ = 0.1, α = 4, k = 3)

.

EXPERIMENTS (k = 3)
sx

5 10 15 20
PIS PPS PIS PPS PIS PPS PIS PPS

EXPERIMENT – 1
(n1 = 10)

0.01595 0.01513 0.00798 0.00756 0.00532 0.00504 0.00399 0.00378

EXPERIMENT – 2
(n2 = 15)

0.01595 0.01536 0.00798 0.00768 0.00532 0.00512 0.00399 0.00384

EXPERIMENT – 3
(n3 = 20)

0.01595 0.01549 0.00798 0.00774 0.00532 0.00516 0.00399 0.00387

Table 6: TABLE SHOWING THE UPPER BOUND TO THE DISCLOSURE RISKS UNDER
CASE (2) [UNITS ARE UNIDENTIFIABLE] (ϵ = 0.1, α = 4, k = 3)

.

EXPERIMENTS (k = 3)
sx

5 10 15 20
PIS PPS PIS PPS PIS PPS PIS PPS

EXPERIMENT – 1
(n1 = 10)

0.05043 0.03548 0.02523 0.01774 0.01682 0.01183 0.01261 0.00887

EXPERIMENT – 2
(n2 = 15)

0.06174 0.04344 0.03089 0.02173 0.02060 0.01449 0.01545 0.01087

EXPERIMENT – 3
(n3 = 20)

0.07127 0.05015 0.03567 0.02509 0.02378 0.01673 0.01784 0.01255

6 Concluding Remarks

From the tables given in section 5 we can see that, larger the value of WSS [ WSS = (N − k)s2x ], lower
the disclosure risk, on the other hand as WSS becomes larger the inference will be less efficient. From
table (5) and table (6) we can conclude that PPS method gives a better privacy protection than the PIS
method throughout for each choice of sx and each experiment. On the other hand, from table (3) and
table (4) it is clear that the powers at different choices of alternatives are larger for the test under PIS
method than the PPS method. Therefore accuracy of inference and privacy protection work in opposite
direction. In this paper we have used the usual F-statistic based on the synthetic data to carry out the
tests for both PIS and PPS, but it is desirable to derive the Likelihood Ratio Test (LRT) for each of
them. We wish to take it up in the future.
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